Phl”lp Staniczenko
u Department of Physics and Said Business School
Oxford University

’ In‘coll boration with:

OWen Lewrs Department of Zoology, Oxford University
NICk Jones Systems Biology, Oxford University
Felix Reed Tsochas Cabdyn Complexrty Centre, Oxf.rd







Overview

* Modelling community ecology

e Structural dynamics and robustness of food webs

* Other projects



Modelling community ecology
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Interspecific interaction
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Modelling community ecology
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Stability and complexity in model ecosystems
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Freure 3.1. Schematic representation of a two-level trophic web
with (a) one species at cach level, and (b) n species at each level. H
and P stand for host and parasite, or alternatively for herbivore
and predator.

May (1973) Princeton University Press, Princeton NJ



Modelling community ecology
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Network structure and biodiversity loss in food webs
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Interspecific interaction

Modelling community ecology
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Foraging adaptation and the relationship between
food-web complexity and stability

Before After

Kondoh (2003) Science 299, 1388-1391



Interspecific interaction
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Trophic network models explain instability of Early Triassic
terrestrial communities

no. of links in metanetwork

no. of guilds

Roopnarine et al. (2007) Proc. R. Soc. B 271, 2077-2086



Modelling community ecology
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Size, foraging, and food web structure
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Petchey et al. (2008) PNAS 105, 4191-4196



Interspecific interaction

Modelling community ecology
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Structural dynamics and robustness of food webs

* [ntroduce a model with realistic, dynamic, food-web structure

* |dentify a new category of species that promote adaptive robustness

Implications for biodiversity conservation

Which species removals Which species provide
cause the largest ||~ ecosystem stability
knock-on effect? in the first place?

Staniczenko et al. (2010) Ecology Letters 13, 891-899



Chesapeake Bay food web
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Predator-prey rewiring model
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Structural robustness
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Structural robustness
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Structural robustness
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Structural robustness in empirical food webs
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Structural robustness in empirical food webs

Structural robustness, R,

Shelf > Shelf
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Structural robustness in empirical food webs

Biodiversity?
Link density, Connectance?
Top, Intermediate, Bottom species?

Average trophic level?
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Structural robustness in empirical food webs
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Overlap species

* Species in the rewiring graph with k>0
* Offer biologically-plausible potential predators to other species

* Provide a compensatory mechanism that enables ecosystem adaptation
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Overlap species and the proportional increase in robustness
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Summary

* [ntroduced a model with realistic, dynamic, food-web structure
* Shown some results for empirical food webs

* |dentified a new category of species that promote adaptive robustness



Further work

e Theoretical:

» Consider synthetic food webs
» Apply to mutualistic and antagonistic ecological networks
* Incorporate with population dynamic models

* Empirical:

» Overlap species in the field
* Phylogenetic relationships
 Implications for ecosystem conservation and management

Which species removals Which species provide
cause the largest ||~ ecosystem stability
knock-on effect? in the first place?



Projects

Rapidly detecting disorder in rhythmic biological signals.
Staniczenko, Lee & Jones (2009) Phys. Rev. E 79:011915.

Structural dynamics and robustness of food webs.
Staniczenko, Lewis, Jones, Reed-Tsochas (2010) Ecology Letters 13, 891.

Spatial contagion of fluctuations in social systems.
Staniczenko, Reed-Tsochas, Plant & Johnson (2010) in preparation.

Reallocation and switching dynamics in quantitative host-parasitoid food webs.
Staniczenko, Lewis & Reed-Tsochas (2010) in preparation.

Nestedness in quantitative antagonistic and cooperative ecological networks.
Staniczenko, Lewis & Reed-Tsochas, on going.

Biodiversity optimisation in multi-functional ecosystems.
Bagchi, Garlaschelli & Staniczenko, on going.
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Thank you for your attention.
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